Math 161 section 21 - Midterm 2

Instructor: Jack Shotton.

November 7th 2016.

Time available: 50 minutes.

This exam is marked out of 40, and counts for 20% of the course grade.

Write neatly. Start with the questions you know how to do.

Notation: \mathbb{Z} denotes the integers, \mathbb{Q} the rational numbers, \mathbb{R} the real numbers, \mathbb{N} the natural numbers $\{1, 2, 3, \ldots\}$.

1. (a) (3 points) Define what it means for a function f to be continuous on \mathbb{R} .

Solution: It means that, for every $a \in \mathbb{R}$ and every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(a)| < \epsilon$ for all $x \in \mathbb{R}$ such that $|x - a| < \delta$. Alternatively and equivalently, it means that for all $a \in \mathbb{R}$, $\lim_{x \to a} f(x) = f(a)$.

(b) (5 points) Prove that, if f and g are continuous on \mathbb{R} , then so is $f \circ g$.

Solution: Let $a \in \mathbb{R}$ and $\epsilon > 0$. As f is continuous at g(a), there is $\delta_1 > 0$ such that $|f(y) - f(g(a))| < \epsilon$ for all y such that $|y - g(a)| < \delta_1$. As g is continuous at a there is $\delta > 0$ such that $|g(x) - g(a)| < \delta_1$ for all $x \in \mathbb{R}$ such that $|x - a| < \delta$. Therefore, if $|x - a| < \delta$ then $|g(x) - g(a)| < \delta_1$ and so (taking y = g(x)) $|f(g(x)) - f(g(a))| < \epsilon$, as required.

(c) (2 points) Give an example of functions f and g on \mathbb{R} such that f is continuous on \mathbb{R} , g is not continuous on \mathbb{R} , and $f \circ g$ is continuous on \mathbb{R} . You do not have to prove that your example works.

Solution: Let $f(x) = x^2$, and let g(x) = 1 if $x \ge 0$ and -1 if x < 0. Then $(f \circ g)(x) = 1$ for all x. So $f \circ g$ is continuous, f is continuous, g is not.

2. (a) (3 points) State the extreme value theorem.

Solution: If f is a continuous function on the closed interval [a, b], then f has a maximum and a minimum on [a, b]. (I would accept just maximum or just minimum.) (b) (4 points) Suppose that f is a continuous function on $[0,\infty)$ such that f(0) > 0 and such that

$$\lim_{x \to \infty} f(x) = 0.$$

Prove that f has a maximum.

Solution: As f(0) > 0 and $\lim_{x\to\infty} f(x) = 0$, there is $X \in \mathbb{R}$ such that |f(x) - 0| < f(0)for all $x \ge X$. Let x_0 be a point in [0, X] at which f attains a maximum, which

for all $x \ge X$. Let x_0 be a point in [0, X] at which f attains a maximum, which exists by the extreme value theorem. Then I claim that x_0 is a maximum for f on all of $[0, \infty)$. Indeed, if $x \in [0, \infty)$, then either $x \le X$, in which case $f(x) \le f(x_0)$ by definition of x_0 , or x > X in which case f(x) < f(0) by choice of X. In the first case we are done, and in the second case observe that $0 \in [0, X]$, so $f(0) \le f(x_0)$ and so $f(x) < f(0) \le f(x_0)$ as required.

(c) (3 points) Give an example of a continuous, bounded function on (0,1] that has neither a maximum nor a minimum. You do not have to prove that your example works.

Solution: Take $f(x) = (1-x)\sin(\frac{1}{x})$.

3. (a) (3 points) If $S \subset \mathbb{R}$, define what it means for x to be a least upper bound for S.

Solution: It means that x is an upper bound for S and that any other upper bound for S is at least x. In other words, $x \ge y$ for all $y \in S$, and if $x' \ge y$ for all $y \in S$ then $x' \ge x$.

(b) (3 points) Prove from the least upper bound axiom that \mathbb{N} is not bounded above in \mathbb{R} .

Solution: The least upper bound axiom states that every non-empty, bounded above subset of \mathbb{R} has a least upper bound.

Suppose that \mathbb{N} is bounded above in \mathbb{R} . As \mathbb{N} is non-empty, it has a least upper bound, $x = \sup(\mathbb{N})$. Then x - 1 < x and so is not an upper bound for \mathbb{N} , there is $n \in \mathbb{N}$ such that n > x - 1. But that n + 1 > x. As $n + 1 \in \mathbb{N}$ also, this contradicts the assumption that x is an upper bound for \mathbb{N} . (c) (4 points) If A and B are non-empty subsets of \mathbb{R} such that $a \leq b$ for all $a \in A$ and $b \in B$, show that $\sup(A)$ and $\inf(B)$ exist and prove that $\sup(A) \leq \inf(B)$.

Solution: By assumption, A and B are non-empty. As A is bounded above (by any element of B) and B is bounded below (by any element of A), $\sup(A)$ and $\inf(B)$ exist.

If $b \in B$, then b is an upper bound for A. Therefore $b \ge \sup(A)$. This shows that $\sup(A)$ is a lower bound for B, and so $\sup(A) \le \inf(B)$.

4. (10 points) State and prove the intermediate value theorem.

Solution: If f is a continuous function on [a, b] such that f(a) < c < f(b) for some $c \in \mathbb{R}$, then there exists $x \in [a, b]$ such that f(x) = c.

Proof. Replacing f by f - c, we may assume that c = 0.

Let $S = \{x \in [a,b] : f(x) < 0\}$. Then S is non-empty (as f(a) < 0 so $a \in S$) and bounded above (by b). Therefore we may let $x_0 = \sup(S)$. Then $a \le x_0 \le b$.

I claim that $f(x_0) = 0$; we are then done. The claim is proved by contradiction; suppose that $f(x_0) \neq 0$. Then either $f(x_0) > 0$ or $f(x_0) < 0$.

Suppose first that $f(x_0) > 0$. Then $x_0 > a$ (as f(a) < 0, so $x_0 \neq a$) and so f is left-continuous at x_0 . Therefore there exists $\delta > 0$ such that $|f(x) - f(x_0)| < \frac{f(x_0)}{2}$ for all $x \in (x_0 - \delta, x_0]$. In particular, for $x \in (x_0 - \delta, x_0]$,

$$f(x) > f(x_0) - \frac{f(x_0)}{2} > 0.$$

As $x_0 = \sup(S)$ and $x_0 - \delta < x_0$, there is $x \in S$ such that $x_0 \ge x > x_0 - \delta$. Choose such an x. Then f(x) < 0, as $x \in S$, but f(x) > 0 as $x \in (x_0 - \delta, x_0]$. Contradiction! Now suppose that $f(x_0) < 0$. Then $x_0 < b$ (as f(b) > 0, so $x_0 \neq b$) and so f is rightcontinuous at x_0 . Therefore there exists $\delta > 0$ such that $|f(x) - f(x_0)| < |f(x_0)|/2$ for all $x \in [x_0, x_0 + \delta)$. In particular, for $x \in [x_0.x_0 + \delta)$,

$$f(x) < f(x_0) + \frac{|f(x_0)|}{2} = \frac{f(x_0)}{2} < 0.$$

Choose such an x with $x > x_0$. Then as x_0 is an upper bound for S, $x \notin S$. So $f(x) \ge 0$. But as $x \in [x_0, x_0 + \delta)$, f(x) < 0. Contradiction!