
Math 161 section 21 – Midterm 2

Instructor: Jack Shotton.

November 7th 2016.

Time available: 50 minutes.

This exam is marked out of 40, and counts for 20% of the course grade.

Write neatly. Start with the questions you know how to do.

Notation: Z denotes the integers, Q the rational numbers, R the real
numbers, N the natural numbers {1, 2, 3, . . .}.



1. (a) (3 points) Define what it means for a function f to be continuous on R.

Solution: It means that, for every a ∈ R and every ε > 0, there exists δ > 0
such that |f(x)− f(a)| < ε for all x ∈ R such that |x− a| < δ.

Alternatively and equivalently, it means that for all a ∈ R, limx→a f(x) = f(a).

(b) (5 points) Prove that, if f and g are continuous on R, then so is f ◦ g.

Solution: Let a ∈ R and ε > 0. As f is continuous at g(a), there is δ1 > 0 such
that |f(y)−f(g(a))| < ε for all y such that |y−g(a)| < δ1. As g is continuous at
a there is δ > 0 such that |g(x)− g(a)| < δ1 for all x ∈ R such that |x− a| < δ.

Therefore, if |x − a| < δ then |g(x) − g(a)| < δ1 and so (taking y = g(x))
|f(g(x))− f(g(a))| < ε, as required.

(c) (2 points) Give an example of functions f and g on R such that f is continuous
on R, g is not continuous on R, and f ◦ g is continuous on R. You do not have to
prove that your example works.

Solution: Let f(x) = x2, and let g(x) = 1 if x ≥ 0 and −1 if x < 0. Then
(f ◦ g)(x) = 1 for all x. So f ◦ g is continuous, f is continuous, g is not.

2. (a) (3 points) State the extreme value theorem.

Solution: If f is a continuous function on the closed interval [a, b], then f has
a maximum and a minimum on [a, b].

(I would accept just maximum or just minimum.)
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(b) (4 points) Suppose that f is a continuous function on [0,∞) such that f(0) > 0
and such that

lim
x→∞

f(x) = 0.

Prove that f has a maximum.

Solution: As f(0) > 0 and limx→∞ f(x) = 0, there is X ∈ R such that

|f(x)− 0| < f(0)

for all x ≥ X. Let x0 be a point in [0, X] at which f attains a maximum, which
exists by the extreme value theorem. Then I claim that x0 is a maximum for
f on all of [0,∞). Indeed, if x ∈ [0,∞), then either x ≤ X, in which case
f(x) ≤ f(x0) by definition of x0, or x > X in which case f(x) < f(0) by
choice of X. In the first case we are done, and in the second case observe that
0 ∈ [0, X], so f(0) ≤ f(x0) and so f(x) < f(0) ≤ f(x0) as required.

(c) (3 points) Give an example of a continuous, bounded function on (0, 1] that has
neither a maximum nor a minimum. You do not have to prove that your example
works.

Solution: Take f(x) = (1− x) sin( 1
x
).

3. (a) (3 points) If S ⊂ R, define what it means for x to be a least upper bound for S.

Solution: It means that x is an upper bound for S and that any other upper
bound for S is at least x. In other words, x ≥ y for all y ∈ S, and if x′ ≥ y for
all y ∈ S then x′ ≥ x.

(b) (3 points) Prove from the least upper bound axiom that N is not bounded above
in R.

Solution: The least upper bound axiom states that every non-empty, bounded
above subset of R has a least upper bound.

Suppose that N is bounded above in R. As N is non-empty, it has a least upper
bound, x = sup(N). Then x− 1 < x and so is not an upper bound for N, there
is n ∈ N such that n > x − 1. But that n + 1 > x. As n + 1 ∈ N also, this
contradicts the assumption that x is an upper bound for N.
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(c) (4 points) If A and B are non-empty subsets of R such that a ≤ b for all a ∈ A
and b ∈ B, show that sup(A) and inf(B) exist and prove that sup(A) ≤ inf(B).

Solution: By assumption, A and B are non-empty. As A is bounded above
(by any element of B) and B is bounded below (by any element of A), sup(A)
and inf(B) exist.

If b ∈ B, then b is an upper bound for A. Therefore b ≥ sup(A). This shows
that sup(A) is a lower bound for B, and so sup(A) ≤ inf(B).

4. (10 points) State and prove the intermediate value theorem.

Solution: If f is a continuous function on [a, b] such that f(a) < c < f(b) for some
c ∈ R, then there exists x ∈ [a, b] such that f(x) = c.

Proof. Replacing f by f − c, we may assume that c = 0.

Let S = {x ∈ [a, b] : f(x) < 0}. Then S is non-empty (as f(a) < 0 so a ∈ S) and
bounded above (by b). Therefore we may let x0 = sup(S). Then a ≤ x0 ≤ b.

I claim that f(x0) = 0; we are then done. The claim is proved by contradiction;
suppose that f(x0) 6= 0. Then either f(x0) > 0 or f(x0) < 0.

Suppose first that f(x0) > 0. Then x0 > a (as f(a) < 0, so x0 6= a) and so f is

left-continuous at x0. Therefore there exists δ > 0 such that |f(x) − f(x0)| < f(x0)
2

for all x ∈ (x0 − δ, x0]. In particular, for x ∈ (x0 − δ, x0],

f(x) > f(x0)−
f(x0)

2
> 0.

As x0 = sup(S) and x0 − δ < x0, there is x ∈ S such that x0 ≥ x > x0 − δ. Choose
such an x. Then f(x) < 0, as x ∈ S, but f(x) > 0 as x ∈ (x0− δ, x0]. Contradiction!

Now suppose that f(x0) < 0. Then x0 < b (as f(b) > 0, so x0 6= b) and so f is right-
continuous at x0. Therefore there exists δ > 0 such that |f(x) − f(x0)| < |f(x0)|/2
for all x ∈ [x0, x0 + δ). In particular, for x ∈ [x0.x0 + δ),

f(x) < f(x0) +
|f(x0)|

2
=
f(x0)

2
< 0.

Choose such an x with x > x0. Then as x0 is an upper bound for S, x 6∈ S. So
f(x) ≥ 0. But as x ∈ [x0, x0 + δ), f(x) < 0. Contradiction!
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