Math 161 section 21 - Midterm 1

Instructor: Jack Shotton.

October 17th 2016.

Time available: 50 minutes.

This exam is marked out of 40, and counts for 20% of the course grade.

Write neatly. Start with the questions you know how to do.

Notation: \mathbb{Z} denotes the integers, \mathbb{Q} the rational numbers, \mathbb{R} the real numbers, \mathbb{N} the natural numbers $\{1, 2, 3, \ldots\}$.

1. (a) (5 points) Prove from the axioms of arithmetic that, if $a \in \mathbb{R}$, then $0 \cdot a = 0$.

Solution: We have the following equalities:

$$0 \cdot a = (0+0) \cdot a \qquad \text{by AId}$$
$$= 0 \cdot a + 0 \cdot a. \qquad \text{by D}$$

Adding
$$-0 \cdot a$$
 to both sides we obtain

$$0 \cdot a + (-0 \cdot a) = (0 \cdot a + 0 \cdot a) + (-0 \cdot a).$$

By AIn, the left hand side is 0. The right hand side, by AA, is

$$0 \cdot a + (0 \cdot a + (-0 \cdot a)) = 0 \cdot a + 0$$
 by AIn
= 0 \cdot a by AId.

Therefore $0 = 0 \cdot a$ as required.

(b) (5 points) Prove from the axioms of arithmetic that $x \in \mathbb{R}$ satisfies $x^2 = x$ if and only if x = 0 or x = 1.

Solution: There are two directions to address: that $x^2 = x$ if x = 0 or x = 1 (the 'if' direction), and that if $x^2 = x$ then x = 0 or x = 1 (the 'only if' direction).

For the first direction, if x = 0 then $x^2 = 0 \cdot 0 = 0$ by part a, and if x = 1 then $x^2 = 1 \cdot 1 = 1$ by MId.

For the other direction, suppose that $x^2 = x$ and $x \neq 0$. We must prove that x = 1. As $x \neq 0$ we may use MIn to obtain $x^{-1} \cdot (x^2) = x^{-1} \cdot x = 1$. But

 $x^{-1} \cdot (x^2) = x^{-1} \cdot (x \cdot x)$ = $(x^{-1} \cdot x) \cdot x$ MA = $1 \cdot x$ MIn

$$= x$$
 MId.

Therefore $x = x^{-1} \cdot (x^2) = 1$ as required.

2. (a) (5 points) Prove from the order axioms that $x^2 \ge 0$ for all $x \in \mathbb{R}$.

Solution: By O1, either x > 0, x = 0 or x < 0. If x = 0, then $x^2 = 0$ so we are done. If x > 0, then by O4, $x^2 > 0 \cdot x = 0$ and we are done. If x < 0, then, by O3, x - x < 0 - x and so -x > 0. So $x^2 = (-x)^2 > 0$ by the second case.

(b) (5 points) Using part (a), or otherwise, prove that $x^2 + \frac{1}{x^2} \ge 2$ for all $x \in \mathbb{R}$ with $x \ne 0$.

Solution: Note that $x^2 - 2 + \frac{1}{x^2} = (x - \frac{1}{x})^2 \ge 0$ by part (a). Therefore (adding 2 to both sides using O3) $x^2 + \frac{1}{x^2} \ge 2$ as required.

3. (a) (6 points) Prove by induction on n that, for $n \ge 1$,

$$\sum_{i=1}^{n} i2^{i} = 2 + (n-1)2^{n+1}.$$
(1)

The notation $\sum_{i=1}^{n} i2^{i}$ means $2^{1} + 2 \cdot 2^{2} + \ldots + n2^{n}$.

Solution: Base case. Suppose that n = 1. Then $\sum_{i=1}^{n} i2^{i} = 1 \cdot 2^{1} = 2$ and $2 + (n-1)2^{n+1} = 2 + 0 \cdot 2^{1} = 2$. These are equal as required.

Induction step Suppose that equation (1) is true for n. We must show that it is true for n + 1. But

$$\sum_{i=1}^{n+1} i2^i = \sum_{i=1}^n i2^i + (n+1)2^{n+1}$$

= 2 + (n-1)2^{n+1} + (n+1)2^{n+1} by the induction hypothesis
= 2 + 2n2^{n+1}
= 2 + n2^{n+2} as 2 \cdot 2^{n+1} = 2^{n+2}
= 2 + (n+1-1)2^{(n+1)+1}.

So equation (1) is true for n + 1 as required.

(b) (4 points) Prove that the function $f(x) = \frac{x}{x+1}$ is injective.

Solution: Suppose that f(x) = f(y). We must show that x = y. But $\frac{x}{x+1} = \frac{y}{y+1}$ $\therefore x(y+1) = y(x+1)$ $\therefore xy + x = yx + y$ $\therefore x = y$ cancelling xy,
as required.

4. (a) (5 points) Prove from the definition that

$$\lim_{x \to a} x^2 = a^2.$$

lution: Note first that, if
$$|x - a| < \delta \le 1$$
, then

$$|x^2 - a^2| = |x - a||x + a|$$

$$\le \delta |x + a|$$

$$\le \delta (|x| + |a|)$$
triangle ineq.

$$< \delta (|a| + 1 + |a|)$$

$$= \delta (2|a| + 1).$$
the penultimate step we have used that $|x| = |x - a + a| \le |x - a| + |a| < 1 + |a|$

In the penultimate step we have used that $|x| = |x-a+a| \le |x-a|+|a| < 1+|a|$. So let $\epsilon > 0$ and take $\delta = \min(\frac{\epsilon}{2|a|+1}, 1)$. Then we have shown that, if $|x-a| < \delta$, then $|x^2 - a^2| < \delta(2|a| + 1) \le \epsilon$.

So $\lim_{x\to a} x^2 = a^2$ as required.

(b) (5 points) Calculate

So

$$\lim_{x \to 1} \frac{1 - x^3}{1 - x^2}.$$

You may use any results from class.

Solution: Note that $1 - x^3 = (1 - x)(1 + x + x^2)$ and $1 - x^2 = (1 - x)(1 + x)$. So $\frac{1 - x^3}{1 - x^2} = \frac{1 + x + x^2}{1 + x}.$ Now, $\lim_{x\to 1} 1 = 1$, $\lim_{x\to 1} x = 1$, and $\lim_{x\to 1} x^2 = 1^2 = 1$. So by algebra of limits,

$$\lim_{x \to 1} (1 + x + x^2) = \lim_{x \to 1} 1 + \lim_{x \to 1} x + \lim_{x \to 1} x^2 = 1 + 1 + 1 = 3$$

and similarly $\lim_{x\to 1}(1+x) = 2$. As $\lim_{x\to 1}(1+x) \neq 0$, we can apply the quotient part of algebra of limits to get

$$\lim_{x \to 1} \frac{1 + x + x^2}{1 + x} = \frac{\lim_{x \to 1} (1 + x + x^2)}{\lim_{x \to 1} (1 + x)} = \frac{3}{2}.$$

So the limit is $\frac{3}{2}$.