MATH 159 - HOMEWORK 5

Due 1pm on November 4th. Submit all problems; only the starred problems are graded.

- (1) (*)Which of the following sequences converges, and to what limit?
 - (a) $a_n = \frac{1}{n^2+1}$ for $n \in \mathbb{N}$;
 - (b) $a_n = \frac{n^2 1}{n^2 + 1}$ for $n \in \mathbb{N}$; (c) $a_n = \frac{2^n}{n}$ for $n \in \mathbb{N}$.
- (2) (*)Let $a_n \stackrel{n}{=} (-1)^n + \frac{1}{n}$ for $n \in \mathbb{N}$. Find (with proof) lim lub a_n and $\lim \text{glb} a_n.$
- (3) (*)Show that, if 0 < r < 1, then $\lim_{n\to\infty} r^n = 0$ (hint: first show that the limit l exists, and then show that l = rl).
- (4) (*)A sequence $(a_n)_n$ tends to infinity as $n \to \infty$ if, for every $X \in \mathbb{R}$, there exists $N \in \mathbb{N}$ such that $a_n > X$ for all n > N. Show that, if $(a_n)_n$ is a sequence of positive real numbers, then either a_n contains a convergent subsequence, or a_n contains a subsequence that tends to infinity.
- (5) Show that there is a sequence $(a_n)_n$ of real numbers such that, for every $x \in [0,1], a_n$ has a subsequence converging to x.
- (6) Suppose that (a_n)_n and (b_n)_n are sequences such that ∑[∞]_{n=1} a_n = a and ∑[∞]_{n=1} b_n = b. Show that ∑[∞]_{n=1}(a_n + b_n) exists and is equal to a + b.
 (7) (*)Suppose that (a_n)_n is a sequence of reals such that ∑[∞]_{n=1} |a_n| converges.
- Show that $\sum_{n=1}^{\infty} a_n$ converges (hint: use the triangle inequality).
- (8) Suppose that $(a_n)_n$ and $(b_n)_n$ are sequences of positive real numbers such that $\sum_{n=1}^{\infty} a_n$ converges, and $b_n \leq a_n$ for all n. Show that $\sum_{n=1}^{\infty} b_n$ converges.

- (9) (*)Show that the series $\sum_{n=1}^{\infty} \frac{n}{4^n}$ converges. (10) Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges. (11) (optional, harder) What is the value of $\sum_{n=1}^{\infty} \frac{n}{4^n}$?