MATH 159 - HOMEWORK 3

Due 2pm on January 27th. Only problems with a * will be graded, but please submit solutions to everything.

- (1) Suppose that a set $S \subset \mathbb{R}$ has a maximum element; that is, there is an an element $s \in S$ such that $s \geq t$ for all $t \in S$. Show that lub(S) = s.
- (2) (*) Suppose that $S \subset \mathbb{R}$ and $T \subset \mathbb{R}$ are non-empty and bounded below. Show directly from the definition of glb that:
 - (a) glb(S) = -lub(-S) where $-S = \{-s | s \in S\};$
 - (b) $\operatorname{glb}(S \cup T) = \min\{\operatorname{glb}(S), \operatorname{glb}(T)\};\$
 - (c) glb(S+T) = glb(S) + glb(T) where $S + T = \{s + t | s \in S, t \in T\};$
 - (d) if c is positive, then $glb(c \cdot S) = c \cdot glb(S)$, where $c \cdot S = \{c \cdot s | s \in S\}$.
- (3) (*) If S and T are non-empty bounded subsets of \mathbb{R} , and $S T = \{s t | s \in S, t \in T\}$, give a formula for lub(S T). Prove it (you can use the results of lectures and the previous question, provided that you state them clearly).
- (4) (*)
 - (a) Show that, if a is an integer such that a^2 is divisible by three, then a is divisible by three.
 - (b) Show that there is no $x \in \mathbb{Q}$ with $x^2 = 3$ (state clearly where you use the first part, if you do use it).
 - (c) Show that there is an $x \in \mathbb{R}$ with $x^2 = 3$.
- (5) (*)Show that the set of rationals whose denominator is a power of two is dense in \mathbb{R} ; that is, show that for any $a, b \in \mathbb{R}$ with a < b there exists an integer c and natural number n such that $a < \frac{c}{2^n} < b$.
- (6) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a function with the following properties:
 - (a) f is strictly increasing; that is, if a < b then f(a) < f(b);

(b) if $x \in \mathbb{Q}$, then f(x) = x.

Show that f(x) = x for all $x \in \mathbb{R}$. (hint: use that $x = \text{lub}\{y \in \mathbb{Q} : y < x\}$ to show that $f(x) \ge x$; argue similarly with greatest lower bounds to show that $f(x) \le x$.)