MATH 159 – HOMEWORK 2

Due 1pm on October 14th. Only problems with a * will be graded, but please submit solutions to everything.

- (1) (*)From the ring axioms show that, if $a, b \in \mathbb{Z}$, then $(-a) \times (-b) = a \times b$.
- (2) (*)From the ring axioms together with cancellation show that, if $a, b \in \mathbb{Z}$ and $a^2 = b^2$, then a = b or a = -b.
- (3) Review question 6 from the last homework, in which, for each natural number n, we defined the equivalence relation \equiv_n on \mathbb{Z} . Let \mathbb{Z}_n be the set of equivalence classes in \mathbb{Z} under \equiv_n , and write \overline{a} for the equivalence class of the integer a.
 - (a) Explain why (6c) and (6d) from last time allow us to define operations + and \times on \mathbb{Z}_n by the formulas $\overline{a} + \overline{b} = \overline{a+b}$ and $\overline{a} \times \overline{b} = \overline{a \times b}$.
 - (b) (*) With these operations, \mathbb{Z}_n satisfies the ring axioms. Prove it.
 - (c) (*) Does \mathbb{Z}_6 satisfy cancellation? What about \mathbb{Z}_5 (hint: find multiplicative inverses)?
 - (d) Why does part (c) mean that cancellation cannot be deduced from the ring axioms?
- (4) Complete the missing proof from lectures that addition is well-defined on Q.
- (5) Show from the order axioms that (for a, b in an ordered ring):
 - (a) (*) If a < 0 and b < 0 then ab > 0;
 - (b) $a^2 \ge 0$ and if $a^2 = 0$ then a = 0;
 - (c) (*) If ab = 0 then a = 0 or b = 0 (i.e. that cancellation holds in an ordered ring);
 - (d) $2ab \le a^2 + b^2$.

You may assume standard facts about rings, but must work directly from O1 - O4 (though you should feel to prove any facts you need as lemmas!).

(6) (*)Using the well-ordering principle, prove that, if $n \in \mathbb{N}$, then

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$$

- (7) Show that if a, b are non-zero elements of an ordered field, which are either both positive or both negative, and a > b, then $a^{-1} < b^{-1}$.
- (8) (*) Show that, in an ordered field, there cannot be a smallest positive element (that is, if a > 0, then there exists b > 0 with a > b).
- (9) (optional, harder) Find a set R with operations $+, \times$, satisfying all of the ring axioms except MC, in which multiplication is not commutative.