MATH 159 – HOMEWORK 2

Due 2pm on April 13th. Throughout, F denotes a field. Only problems with a * will be graded, but please submit solutions to everything.

- (1) (*)From the field axioms show that, if $a, b \in F$, then $(-a) \times b = -(a \times b)$.
- (2) From the field axioms show that, if $a, b \in F$ and $a \times b = 0$, then a = 0 or b = 0.
- (3) (*)From the field axioms show that, if $a, b \in F$ and $a^2 = b^2$, then a = b or a = -b.
- (4) Review question 6 from the last homework, in which, for each natural number n, we defined the equivalence relation \equiv_n on \mathbb{Z} . Let \mathbb{Z}_n be the set of equivalence classes in \mathbb{Z} under \equiv_n , and write \overline{a} for the equivalence class of the integer a.
 - (a) Think about why (6c) and (6d) from last time allow us to define operations + and × on \mathbb{Z}_n by the formulas $\overline{a} + \overline{b} = \overline{a+b}$ and $\overline{a} \times \overline{b} = \overline{a \times b}$.
 - (b) (*) With these operations, \mathbb{Z}_n satisfies the all the field axioms except possible the existence of multiplicative inverses. Prove it.
 - (c) (*) Which of the following are fields: \mathbb{Z}_3 , \mathbb{Z}_4 , \mathbb{Z}_5 , \mathbb{Z}_6 ?
 - (d) (optional) Make a conjecture about when \mathbb{Z}_n is a field. Can you prove it?
- (5) Let $F = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$, so $F \subset \mathbb{R}$. Show that F is a field (you can assume that \mathbb{R} is a field, and that $\sqrt{2} \notin \mathbb{Q}$).
- (6) Show from the order axioms that (for a, b in an ordered field):

(a) (*) If a < 0 and b < 0 then ab > 0;

(b) (*) $a^2 \ge 0;$

(c) $2ab \le a^2 + b^2$ with equality if and only if a = b.

You may assume standard facts about fields, but must work directly from O1 - O4 (though you should feel free to prove any facts you need as lemmas!).

- (7) Show that if a, b are non-zero elements of an ordered field, which are either both positive or both negative, and a > b, then $a^{-1} < b^{-1}$.
- (8) (*) Show that, in an ordered field, there cannot be a smallest positive element (that is, if a > 0, then there exists b > 0 with a > b).
- (9) (optional, harder) Find a field with four elements. Does there exist a field with six elements?