Math 162 – final exam

Instructor: Jack Shotton.

March 13th/17th 2017.

Time available: 120 minutes.

This exam is marked out of 120, and counts for 50% of the course grade.

Write neatly. Start with the questions you know how to do, and aim to spend about 20 minutes on each question.

Notation: \mathbb{Z} denotes the integers, \mathbb{Q} the rational numbers, \mathbb{R} the real numbers, \mathbb{N} the natural numbers $\{1, 2, 3, \ldots\}$.

- 1. Let f be a bounded function on [a, b].
 - (a) (12 points) Prove that, if f is continuous, then f is integrable.
 You may assume that a continuous function on [a, b] is uniformly continuous, and any other results from class that you need.
 - (b) (8 points) Suppose that f is integrable, $\int_a^b f = 0$, and that g is a function such that

$$0 \le g(x) \le f(x)$$

for all $x \in [a, b]$.

Prove that g is integrable and that $\int_a^b g = 0$.

2. If f is a continuous function on [a, b], let F be the function defined by

$$F(x) = \int_{a}^{x} f$$

for $x \in [a, b]$.

- (a) (4 points) State the first fundamental theorem of calculus.
- (b) (6 points) Give an example of an integrable function f on [-1, 1] such that F is not differentiable at 0. Briefly justify that your example works.
- (c) (6 points) Give an example of an integrable function f on [-1,1] such that f is not continuous at 0, but F is differentiable at 0. Briefly justify that your example works.
- (d) (4 points) Give an example of an integrable function f on [-1, 1] such that f is discontinuous at infinitely many points, but F is differentiable at every $x \in (-1, 1)$. You do not have to justify that your example works.

3. (a) For $n \ge 1$, let

$$I_n = \int_0^\infty \frac{1}{(1+x^2)^n} \, dx.$$

You can assume that this improper integral converges.

- i. (2 points) Find I_1 .
- ii. (8 points) By writing

$$\frac{1}{(1+x^2)^n} = \frac{1+x^2}{(1+x^2)^{n+1}}$$

and using integration by parts, prove that

$$I_{n+1} = \frac{2n-1}{2n}I_n$$

for $n \geq 1$.

- iii. (2 points) Find I_4 .
- (b) (8 points) Find the arc length of the parametrised curve $(t \sin(t), 1 \cos(t))$ for t between 0 and 2π .

- 4. (a) (2 points) Define what it means for a sequence $(a_n)_n$ to converge.
 - (b) (8 points) Prove that a bounded, decreasing sequence converges.
 - (c) Let $a_1 = 2$ and $a_{n+1} = \frac{2a_n+1}{3}$ for all $n \ge 1$. i. (3 points) Prove that $a_n \ge 1$ for all $n \ge 1$.
 - ii. (4 points) Prove that $(a_n)_n$ converges.
 - iii. (3 points) Find

$$\lim_{n \to \infty} a_n.$$

- 5. (a) (8 points) Prove that, if a series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then it is convergent.
 - (b) For each of the following series, say whether or not it converges, and give a brief proof:
 - i. (4 points)

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}};$$

$$\sum_{n=1}^{\infty} \frac{n!}{2^{n^2}};$$

iii. (4 points)

$$\sum_{n=2}^{\infty} \frac{1}{\log(n)^{\log(n)}}.$$

- 6. (a) (4 points) Find the *n*th Taylor polynomial of e^x at 0.
 - (b) (8 points) Using Taylor's theorem, prove that

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}.$$

(c) (8 points) By differentiating the equation

$$\frac{1}{1-x} = 1 + x + \ldots + x^{n-1} + \frac{x^n}{1-x},$$

prove that if |x| < 1 then

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} a_n x^n$$

for certain numbers a_n which you should find.