Math 163 section 21 – final

Instructor: Jack Shotton. Wednesday 7th June 2017, 10:30–12:30.

Time available: 2 hours.

This exam is marked out of 120, and counts for 50% of the course grade.

Write neatly. Start with the questions you know how to do.

Notation: \mathbb{Z} denotes the integers, \mathbb{Q} the rational numbers, \mathbb{R} the real numbers, \mathbb{C} the complex numbers, \mathbb{N} the natural numbers $\{1, 2, 3, \ldots\}$.

- (a) (5 points) Let f(x) = 0 for all x. Find a sequence of functions f_n on [0, 1] such that f_n converges to f pointwise but not uniformly on [0, 1].
 Prove that your example does not converge uniformly.
 - (b) (8 points) Suppose that f_n and f are functions on [a, b] such that f_n → f uniformly on [0, 1] and such that every f_n is integrable.
 Prove that f is integrable.
 - (c) (7 points) For $x \in \mathbb{R}$, let

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{(x+n)^2}$$

Prove that f is integrable on [a, b] for any $b > a \ge 0$ and find

$$\int_0^1 f(x)dx$$

2. Express the following complex numbers as simply as possible, showing your working.

- (a) (4 points) $|\exp((2+i)^2)|;$
- (b) (4 points) $\cos(i\log(2))$.
- (c) (4 points) $\alpha + \beta + \gamma$ where α , β and γ are the roots of

$$z^3 - 5z^2 + 9z - 3.$$

Do not try to calculate α , β and γ individually.

- (d) (4 points) $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$ where α , β and γ are as in part (c).
- (e) (4 points) $1 w + w^2 w^3 + w^4$ where $w = \exp(i\pi/5)$. *Hint: consider* $w^5 + 1$.

- 3. (a) (10 points) Prove from the definition that [0, 1] is compact.
 - (b) Let $X \subset \mathbb{R}^2$ be a non-empty closed, bounded subset such that, for every point $(x, y) \in X, y > 0.$
 - i. (5 points) Prove that there is a point $(x, y) \in X$ for which y is a minimum.
 - ii. (5 points) Is this true if X is only assumed to be closed, not bounded? Justify your answer.

4. (a) (6 points) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function and let $g : \mathbb{R} \to \mathbb{R}$ be defined by

$$g(t) = f(x+t, y-t)$$

for fixed $(x, y) \in \mathbb{R}^2$. Using the chain rule, or otherwise, find g'(0) in terms of the partial derivatives of f at (x, y).

(b) (4 points) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function such that

$$f(x+t, y-t) = f(x, y)$$

for all $(x, y) \in \mathbb{R}^2$, $t \in \mathbb{R}$. Use part (a) to prove that

$$D_1 f(x, y) - D_2 f(x, y) = 0$$

for all $(x, y) \in \mathbb{R}^2$.

(c) (6 points) Let $f : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ be a differentiable function such that

$$f(\lambda x, \lambda y) = f(x, y) \tag{1}$$

for all $(x, y) \in \mathbb{R}^2 \setminus \{0\}, \lambda \in \mathbb{R} \setminus \{0\}$. Prove that

$$xD_1f(x,y) + yD_2f(x,y) = 0$$
(2)

for all $(x, y) \in \mathbb{R}^2 \setminus \{0\}$.

(d) (4 points) Write down an example of a non-constant function f satisfying equation (1) and check that equation (2) holds for your chosen function.

- 5. Let $A = [0, 1] \times [0, 1] \subset \mathbb{R}^2$.
 - (a) (10 points) Prove from the definition of integration that, if $f : \mathbb{R}^2 \to \mathbb{R}$ is a bounded function such that f(x, y) = 0 for $x \neq y$, then f is integrable on A and

$$\int_A f = 0.$$

- (b) Find counterexamples to the following statements. You do not have to prove that your examples work.
 - i. (5 points) If f is an integrable function on A then, for every $x \in [0, 1]$, the function $g_x(y) = f(x, y)$ is integrable on [0, 1].
 - ii. (5 points) If f is an bounded function on A such that, for every $x \in [0, 1]$, the function $g_x(y) = f(x, y)$ is integrable on [0, 1], then f is integrable on A.

6. (a) (6 points) Find

$$\int_A \frac{1}{(x+y)^2} \, dx \, dy$$

where $A = [1, 4] \times [0, 2]$, giving your answer as a single logarithm.

(b) (7 points) Find

$$\int_D y \, dx \, dy$$

where D is the semicircular region $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, y \ge 0\}.$

(c) (7 points) Let f be a differentiable function on \mathbb{R}^2 , with continuous partial derivatives, such that f(x,0) = 0 and $f(x,1) = x^2$ for all $x \in \mathbb{R}$. Let $g(x,y) = D_2 f(x,y)$, and let $A = [a,b] \times [0,1]$. Find

$$\int_A g.$$