AXIOMS FOR \mathbb{R}

The following are the **axioms of arithmetic**

AdditionAssociative: For all $a, b, c \in \mathbb{R}$, a + (b + c) = (a + b) + c;

MultiplicationAssociative: For all $a, b, c \in \mathbb{R}$, $a \times (b \times c) = (a \times b) \times c$;

Add.Commutative: For all $a, b \in \mathbb{R}$, a + b = b + a;

Mult.Commutative: For all $a, b \in \mathbb{R}$, $a \times b = b \times a$;

Distributive: For all $a, b, c \in \mathbb{R}$, $a \times (b + c) = a \times b + a \times c$ and similarly for $(b + c) \times a$;

AdditiveIdentity: There exists $0 \in \mathbb{R}$ such that, for all $a \in \mathbb{R}$, 0 + a = a + 0 = a;

MultiplicativeIdentity: There exists $1 \in \mathbb{R}$ such that $1 \neq 0$ and, for all $a \in \mathbb{R}, 1 \times a = a \times 1 = a$;

Add.Inverse: For all $a \in \mathbb{R}$ there exists $-a \in \mathbb{R}$ such that a + (-a) = (-a) + a = 0.

Mult.Inverse: For all $a \in \mathbb{R}$ with $a \neq 0$, there exists $a^{-1} \in \mathbb{R}$ with $a \times a^{-1} = a^{-1} \times a = 1$.

These axioms are not on their own sufficient to describe \mathbb{R} — for example, it is impossible to prove from these axioms that $1 + 1 \neq 0$, or that $x^2 = -1$ has no solutions.

We can improve the situation by using <, which obeys the **order axioms**

O1, trichotomy: For all $a, b \in \mathbb{R}$, precisely one of a > b, a = b or b < a is true;

O2, transitivity: For all $a, b, c \in \mathbb{R}$, if a < b and b < c then a < c;

O3: For all $a, b, c \in \mathbb{R}$, if a < b then a + c < b + c;

O4: For all $a, b, c \in \mathbb{R}$, if a < b and 0 < c then ac < bc.

The arithmetic and order axioms still don't distinguish between \mathbb{R} and \mathbb{Q} — so, for example, it is impossible to prove from them that $x^2 = 2$ has a solution, because this is true in \mathbb{R} but not in \mathbb{Q} . The final axiom is:

The least upper bound property. Suppose that $S \subset \mathbb{R}$ has an upper bound. Then it has a least upper bound — that is, there exists an upper bound x for S such that if y is another upper bound for S then $y \ge x$.